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INTRODUCTION

It has been recently shown by dePackh‘!) that there
exists an equilibrium relativistic flow in diodes which
features a convergent sheath of electrons tending to flow
parallel to the anode (parapotential flow) through which a
core of current flows more or less directly to the anode
(orthopotential flow). The specific impedance at any plane
"made up of electrostatic equipotentials is found to be
proportional to the logarithm of the ratio of anode radius
to the radius of the central current core. This suggests
that if one replaces the central core of free electrons with
a conductor and, furthermore, tapers it and the anode, one
can achieve a matc@ between a high source impedance and a
low impedance tube. One is led to consider, therefore,

coaxial cone geometries such as indicated in figure 1.

There still exists the question of whether this flow

can ever be attained subsequent to the violent events




characteristic of pulse generation in relativistic, high
current diodes such as studied in fhe laboratory. It may
well be that the entire beam life is a transient and devoid
of such an equilibrium. As an aid in answering this question,
we plan to study the problem in a time-dependent way on the
computer. A key part of such a program is an expression

for the force between macro-particles which simulate the

beam of electrons in the presence of the electrodes,..in

this case, rings of charge flowing between coaxial cones.

It is the purpose of this note to supply the necessary
Green's function from which all interparticle forces,
magnetic and electric, can be derived. Another report(z)
will spell out the calculation of forces from the Green's

function and detail all the necessary expansions necessary

to make the formal expressions amenable to computer treatment.

NATURE OF HARMONIC SOLUTIONS IN CONAL REGIONS

The problem is best solved in spherical coordinates,
r,0,¢. The conal surfaces are then given by equations of the
type

g = constant

if we put their vertices at the origin and their axes along

the z-axis, as is shown in figure 2,




It is well known that the harmonic solutions in
|

spherical coordinates can be written in the form

®(r,0,0) = (Anrn + Bnr”n'l) an(cos 6)cos mo

Where an are Legendre functions. Since we will be
considering the region between two cones, the two axes,

cos § = *1, are excluded so that the degree of the Legendre
.function is not restricted to integer values.'®) We can
determine the degree from the condition that Arn + Br~071

be zero on the surfaces of two conducting spheres of radii

r = a, r = b which intersect the cones. We recover our
problem by letting one radius go to infinity while the other

shrinks to zero,.

We have
A2l 4 Ba Pl = ¢

Ab"™ + Bb™P71 = ¢
which gives
(b/a)2n+l =
or

(2n+1) log(b/a) + 2mmri = O




where m is any integer of either sign. Thus,

n = -% + mri/log g .

Now, if either a or b =+ while the other goes to zero we
are left with the following expression for the degree of

the Legendre function

o

n = -3 + iT

where T varies continuously over positive and negative

values. From the definition of the Legendre function in

terms of the hypergeometric function(é)

m/2

m _ 1 pl - o 1-p
Pn (u) T (-m) p-1 F(-n, n+l; 1-m; ‘2_)
we see that
m _ m
P, (w) P_n_l(u)

which for our case means

m

m
P_%+iT(u) =P (p) for p=x, -1 <x <1

—-5-iT

Thus we can restrict our attention to

m

_ < 7 <
P_%+1T(p) 0 T < 0,

These are termed conal harmonics.




INVERSE DISTANCE IN TERMS OF CONAL HARMONICS

We need to know the potential at r,6,¢ of a unit
charge at r’,6’,¢’ in terms of the conal harmonics. The

potential is conventionally written as

+ /
1/|r-r'| = 1/Nr®+r’® - 2rr’ cos v

W

V(r,r’,v)
where
cos Yy = cos § cos §' + sin g sin o' cos (¢~ ')

Now, let

Then

L ot Y
-5 (o+0 1
V(r,r’,y) * V(o-¢’, o+c’, y) = e e ( )
JZcosh (o-0’) - 2cos ¥

(8)

Now we use Fourier's repeated integral theorem to write
% (o040’ ® @
V(o-o', o+c’,y) = e 2 ( ) %.S S cos u(t-c+o’) V(t,o+o’y) dudt
0 —«o
o0
_ ~z(o+a’) 2 ( / ® cos ut dt
= e 7 cos u(o-o')du
0 0 J2cosh t-2cosy




where we have made use of the fact that V(t, a+a’, ¥v)

is even in t, so that
) .
S vV(t, c+c', Y) sin ut dt = 0.
-0

From an integral expression for the Legendre function‘®)

for m=0 we have

o : _
3 2 1 sin vr cosh (v+3)t dt
P2 = o) % vy § -
o N2 cosh t + 2z

Let z = cos g and v = —% + iT so that

0

P (cos ) = g-cosh T S cos T¢ d¢
02 cos § + 2 cosh ¢

~%+iT m

and hence

du

_ 'ye® cos u(o-0’) P_1 s (-cos Y)
Voo, o+c’, v) = o B(0*97) AL
0 cosh 7u

which gives us 1/|7-7'| in terms of the conal harmonic.
In order to express this formula in terms of 8, 6’ and

-’ we must use addition formulae for the conal functions(7)

P_.32_~+iT(—COS Y) = p_%+T(COS 6/) P_%+1T(—cos 9) +

< " m
N _ ’
z P P -
+ 2 /_,1(72 + _‘_li_)...(,rz N (Zm-—l)d) 1 ,T(COS 6°) -—A+i'r( cos 6)
m: 4

cos m(¢-3') for o > g’.




We remove consideration of the coordinate ¢ by integrating

to get the ring potential

© cos (T log 550

27 S p )
. ;7 (cos )P (-cos p') ar
er 0 cosh 7T E+iT ‘%+i¢ s
b 6’ > ¢
V(r,e;r",8")=
Y
on cos (7 log ;7)
P . . (- ' .
rr, SO COSh TT —%—_{_1"{'( cos e)P_.%_FiT (COE) e) dT’

14

B < 8

To take account of the conal boundaries we write the

potential as a sum

1
R R
r-x

where u, and up remove the singularity at 7=’ and satisfy
the zero potential conditions on the boundaries in the

following way,

- -
up (81) = 0 uz (02) = ~1/|r(e2) - ¥’ (")
u, (g2) = 0 u, (6,) = ‘1/‘?(61) - ?’(Gl)l

One can immediately write down factors in u; and uy which
satisfy these conditions and arrive at the following

eXpressions which complete the formal solution.




PP then
2

5 © cos{T log l%) ,
L SO r { PT(cos ) P'r (- cos g’)

cosh 7T

P_ (cos p) - P_ (cos )
- X ¢ 1 % P (cos gg) [P (- cos §") - P (- cos 61)]
P’r (cos §z)- P (cos 6,) "

P (= cos g’) - P( - cos @)
PT (- cos 8,) - P( - cos egj.PT (- cos

-

61) {?T (cos g) - P_ (cos 92)]

- P (cos 63) P (- cos 6,) } dt for § < p’.

For g > p’/, let g « 6’ in the above formula. Note that the
Green's function has the requisite symmetry under the reflection
f e', r &+ r’, and satisfies the condition of zero potential when

either source or field point is on the boundary.

The: last integration over degree, T, must be accomplished by

a preliminary computer run.
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