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It has been recently shown by dePackh(l) that there



characteristic of pulse generation in relativistic, high

current diodes such as studied in the laboratory. It may

well be that the entire beam life is a transient and devoid

of such an equilibrium. As an aid in answering this question,

we plan to study the problem in a time-dependent way on the

computer. A key part of such a program is an expression

for the force between macro-particles which simulate the

beam of electrons in the presence of the electrodes ...in

this case, rings of charge flowing between coaxial cones.

It is the purpose of this note to supply the necessary

Green's function from which all interparticle forces,

magnetic and electric, can be derived. Another report(2)

will spell out the calculation of forces from the Green's

function and detail all the necessary expansions necessary

to make the formal expressions amenable to computer treatment.

The problem is best solved in spherical coordinates,

r,e,¢. The conal surfaces are then given by equations of the

type

if we put their vertices at the origin and their axes along

the z-axis, as is shown in fi~lre 2.



It is well known that the harmonic solutions in

spherical coordinates can be written in the form

Where Pnm are Legendre functions. Since we will be

considering the region between two cones, the two axes,

cos e = ±l, are excluded so that the degree of the Legendre

function is not restricted to integer values.(3) We can

determine the degree from the condition that Ar
n + Br-n-l

be zero on the surfaces of two conducting spheres of radii

r = a, r = b which intersect the cones. We recover our

problem by letting one radius go to infinity while the other

shrinks to zero.

Aan + Ba-n-l 0

Abn + Bb-n-l 0

(b/a)2n+1 I



n = -~ + m~i/log ~ .

values. From the definition of the Legendre function in

terms of the hypergeometric function(4)
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From an integral expression for the Legendre function(6)
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which gives us l/Ii-i'l in terms of the conal harmonic.

In order to express this formula in terms of 8, 8' and

¢-¢' we must use addition formulae for the conal functions(7)
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where Ul and Uz remove the singularity at r=r and satisfy

f'(e')\
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For e > e', let e ~ 8' in the above formula. Note that the
Green's function has the requisite symmetry under the reflection
e ~ e', r ~ r', and satisfies the condition of zero potential when
either source or field point is on the boundary.

The' last integration over degree, 1", must be accomplished by
a preliminary computer run.
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